Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Optogenetic inhibition of Gα signalling alters and regulates circuit functionality and early circuit formation.

blue CRY2/CIB1 C. elegans in vivo D. melanogaster in vivo HEK293A rat dorsal root ganglion NSCs zebrafish in vivo Signaling cascade control Developmental processes
bioRxiv, 8 May 2023 DOI: 10.1101/2023.05.06.539674 Link to full text
Abstract: Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G-protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate a new optogenetic tool that disrupt Gαq signaling through membrane recruitment of a minimal Regulator of G-protein signaling (RGS) domain. This approach, Photo-induced Modulation of Gα protein – Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. We alter the behavior of C. elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq also changes axon guidance in culture dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. By altering the choice of minimal RGS domain, we also show that this approach is amenable to Gαi signaling.
2.

Optical regulation of endogenous RhoA reveals selection of cellular responses by signal amplitude.

blue cyan CRY2/CIB1 Dronpa145K/N pdDronpa1 TULIP HEK293A U-87 MG Signaling cascade control
bioRxiv, 14 May 2021 DOI: 10.1101/2021.02.05.430013 Link to full text
Abstract: How protein signaling networks respond to different input strengths is an important but poorly understood problem in cell biology. For example, the small GTPase RhoA regulates both focal adhesion (FA) growth or disassembly, but whether RhoA serves as a switch selecting between cellular outcomes, or if outcomes are simply modulated by additional factors in the cell, is not clear. Here, we develop a photoswitchable RhoA guanine exchange factor, psRhoGEF, to precisely control endogenous RhoA activity. We also develop a FRET-based biosensor to allow visualization of RhoA activity together with psRhoGEF control. Using these new optical tools, we discover that low levels of RhoA activation preferentially induce FA disassembly in a Src-dependent manner, while high levels induce both FA growth and disassembly in a ROCK-dependent manner. Thus, rheostatic control of RhoA activation with photoswitchable RhoGEF reveals that cells can use signal amplitude to produce multiple responses to a single biochemical signal.
3.

Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.

red BphS Hana3A HEK293A HeLa hMSCs mouse in vivo Neuro-2a Transgene expression Immediate control of second messengers
Sci Transl Med, 26 Apr 2017 DOI: 10.1126/scitranslmed.aal2298 Link to full text
Abstract: With the increasingly dominant role of smartphones in our lives, mobile health care systems integrating advanced point-of-care technologies to manage chronic diseases are gaining attention. Using a multidisciplinary design principle coupling electrical engineering, software development, and synthetic biology, we have engineered a technological infrastructure enabling the smartphone-assisted semiautomatic treatment of diabetes in mice. A custom-designed home server SmartController was programmed to process wireless signals, enabling a smartphone to regulate hormone production by optically engineered cells implanted in diabetic mice via a far-red light (FRL)-responsive optogenetic interface. To develop this wireless controller network, we designed and implanted hydrogel capsules carrying both engineered cells and wirelessly powered FRL LEDs (light-emitting diodes). In vivo production of a short variant of human glucagon-like peptide 1 (shGLP-1) or mouse insulin by the engineered cells in the hydrogel could be remotely controlled by smartphone programs or a custom-engineered Bluetooth-active glucometer in a semiautomatic, glucose-dependent manner. By combining electronic device-generated digital signals with optogenetically engineered cells, this study provides a step toward translating cell-based therapies into the clinic.
Submit a new publication to our database